Inherited Germline Mutations in Men with Prostate Cancer

BACKGROUND

- There is a high prevalence of pathogenic variants in genes that confer hereditary cancer risk among men with metastatic prostate cancer. - Currently, prostate cancer is

OBJECTIVE

- We evaluated genetic testing with a multi-gene hereditary cancer panel among men with a personal history of prostate cancer.

METHODS

COHORT

- Men with prostate cancer who underwent testing with a multi-gene hereditary cancer panel between September 2013 and December 2017 were included in this analysis.
- Clinical information was obtained from providercompleted test request forms.
- Approximately 75% of tests were ordered by Genetics, Medical Oncology, Urology, or Hematology/Oncology providers.

GENETIC TESTING

- The multi gene panel included $A P C, A T M$, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDK4, CDKN2A, CHEK2, EPCAM, GREM1, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, POLD1, POLE, PTEN, RAD51C RAD51D, SMAD4, STK11, and TP53.
- All genes were available for the full testing period, except POLD1, POLE, and GREM1, which were added in July 2016.
- Pathogenic variants were those that received a laboratory classification of Deleterious or Suspected Deleterious.

ANALYSIS

- Individuals with a history of only prostate cancer were evaluated separately from those who had a personal history of one or more additional cancers.
Presented at ASCO-GU on February 9, 2018.

Robert Reid, MD ${ }^{1}$; Marcie DiGiovanni, MS, CGC²; Ryan Bernhisel, MStat²; Krystal Brown, PhD²; Jennifer Saam, PhD²; Johnathan Lancaster, MD, PhD ${ }^{2}$

- Overall, 12.1% of men with prostate cancer were found to carry one or more pathogenic variants in the genes tested here (Table 3).
The positive rate was significantly higher among men with a personal history of prostate and another cancer(s) (14.7%) compared to men with only prostate cancer (10.6%, $\mathrm{p}=0.035$).

Table 3. Prevalence and gene distribution of pathogenic variants among men with prostate cancer (PC)

Gene	PC Only	PC + Additional Cancer(s)	Total*
BRCA1 and BRCA2			
BRCA1	4 (0.5\%)	6 (1.4\%)	10 (0.8\%)
BRCA2	37 (4.7\%)	17 (3.8\%)	54 (4.4\%)
Genes Associated with BreastOvarian Cancer			
ATM	11 (1.4\%)	7 (1.6\%)	18 (1.5\%)
BARD1	1 (0.1\%)	0	1 (0.1\%)
BRIP1	4 (0.5\%)	0	4 (0.3\%)
CHEK2	10 (1.3\%)	12 (2.7\%)	22 (1.8\%)
NBN	1 (0.1\%)	0	1 (0.1\%)
PALB2	1 (0.1\%)	0	1 (0.1\%)
RAD51C	1 (0.1\%)	0	1 (0.1\%)
Mismatch Repair Genes			
MLH1	0	6 (1.4\%)	6 (0.5\%)
MSH2	2 (0.3\%)	11 (2.5\%)	13 (1.1\%)
MSH6	2 (0.3\%)	2 (0.5\%)	4 (0.3\%)
PMS2	3 (0.4\%)	1 (0.2\%)	4 (0.3\%)
Other Genes Associated with Colon Cancer			
APC	2 (0.3\%)	1 (0.2\%)	3 (0.2\%)
MUTYH	1 (0.1\%)	0	1 (0.1\%)
Other Genes			
CDH1	1 (0.1\%)	0	1 (0.1\%)
CDKN2A	1 (0.1\%)	0	1 (0.1\%)
PTEN	1 (0.1\%)	0	1 (0.1\%)
TP53	1 (0.1\%)	2 (0.5\%)	3 (0.2\%)
Total	$\begin{gathered} 84 \\ (10.6 \%) \end{gathered}$	$\begin{gathered} 65 \\ (14.7 \%) \end{gathered}$	$\begin{gathered} 1499 \\ (12.1 \%) \end{gathered}$

Most men with a pathogenic variant were diagnosed between the ages of 50 and 69 regardless of whether additional cancer history was present (Figure 1B).
The prevalence of pathogenic variants in BRCA2 was higher among individuals with only prostate cancer (Figure 2).

- The prevalence of MMR mutations was higher among individuals with additional cancer histor host of whom also had cancers associated with Lynch syndrome (Figure 2).

Figure 2. Prevalence of pathogenic variants by Figure 2. Prevalence of aistory
gene group and cancer his

Gene Group (See Table 3)
4individuals with multipel pathogenic variants excluded (1 1 with prostate cancer
only, 3 with prosstaie and another cancer)

CONCLUSIONS

- Overall, approximately 12% of men with prostate cancer in this cohort had a pathogenic variant in cancer-risk gene.
- This included genes with a well known prostate cancer risk (i.e. BRCA2) as well as genes associated with other cancers, including breas and colon.
This suggests that hereditary cancer testing in men with prostate cancer may aid in medical management decision making to reduce overal ancer risk.

